
~- ---

,._. ~ ,J

' .j 1

t'-\'
r7~

,

~ 'T I-I E U N I V E R S I T' Y 0 F M I C H I G AN

Augtut 1970

Mt·morttutlum J5

CONCOMP

1 HE CAMA MACRO PROCESSOR

T. J. Dingwall
L. J. Julyk
L. W. Wolf

RuprothH od by

NATIONAL TECHNICAL
INFORMATION SERVICE

SpllnQftuld Va "lll~l

.. l . \
.. --

~ I

.JO

BEST
AVAILABLE COPY

T !I E U N I V E R S I T Y 0 F M I C II I G A N

Mcmorl.lndum 35

THE CAMA MACRO PHOCESSOR

'l'. J. Dingwall
L. J. Ju.lyk
L. W. Wolf

CONCOMP: Research in Conversational Use of Computers
ORA Project 07449

P. H. Westervelt, Director

supported by:

DEPAR'l'MENT OF DEFENSE
ADVANCED RESEARCH PROJECTS AGENCY

WASHINGTON, D. C.

CONTRACT NO. DA-49-083 OSA-30~0
ARPA ORDER NO. 716

administer~d through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1970

TABLE OF CONTE~TS

1. Introduction. . . . 1

2. Glossary. . 3

Symbolic Parameter • • . • . . 3
Excluded Symbols . . • • • . 3
Interpreter. • • • . 3
Macro Processor. • • • • 4
Attributes • • 4
Local Set Symbol • . . • • • • • • . 5
Global Set Symbol. • . . • • • • • 5
Prototype Statement. . • • • • • • • • • 5
Language • . . • . • . • • . • • 5
Keyword Parameter. . • • • • • • .• 6
Positional Parameter . • • • • • • •• 7
Macro Call 7
String 8
Null String (or Null). • ••• 8
Default Value. . • • . • • • 8
Leading Symbclic Parameter • • • . • • 8
Macro Command. • • • • • • 9
Concatenation. . • • . • • • • • • 9
Substring. . • . . • 9
Arithmetic Symbols • • • • • • • • • 9
Macro Definition • • • . . • .10
Macro Prototype. • • • • • • • • .10
Macro Model Statement. • • • • • • .10
Operation of the Macro Processor • .10

3. Examples. . . •
3.1

3.2

Appendix A.

Simple Macro Examples . • • . •

Complete Examples • • . • . . • • .

••• 12

• • . 12

. . • 21

Descriptions of Subroutines Used in
the Macro Processor and Available
for General Use ••• • • • • • · · · • ·A-1

iii

1. INTPOOUCTION

Und«r th« CAMA fCovputer-Aided HMthocMtlcal An«ly«i«)

Sytt«» ' , *• havt» (l«vi«od 6 «p«ci«l iMcro processor which

hss as its object-lsnqu4<y«s not assomblar languaqeu« but

hlqher-ordor lanquaqos such an POPTRAN, MAD, or ALCOt..

The macro processor was designed to accomplish A number

of objectives. First, it would enable a relatively unsoohi3~

ticated user who is acquainted only with a language such

as FORTRAN and not with the assembly language, to create

macros and bases of languages without having to code in the

assembly language. Second, the macro language was created

to be a preprocessor for the interpreter language in CANA.

Third, it was created to be an intermediate processor be-

tween the mathematical expressions generated in the terminal

computer which pass through a parsing operation and the base

language such as FORTRAN. The macro processor was also

created so that commands for the CAMA system could be written

and extended easily, thereby enabling relatively unsophisti-

cated users to extend the commands for their own particular

needs, as well as write the original system commands.

The user may create his own languages by means of certain

operational macros which, when expanded, generate FORTRAN

statements. Or he may create languages which generate

statements in a language he or someone else has created.

These statements eventually will be expanded into the base

language such as FORTRAN or MAD. They may also go through

t'w inten rrttoi . TM*» word *i4nqu4<i<*a m this content

mciin«» th.tt in dcfininq tho tn.icro* the uter has cr««tod a

cort^in pattern whono mcaninq is defined by the »acros

chat p-ako up th.it l.tnquaqo. Th«re is vory litclo lan-

quaqr structure in the form that is normally known as

syntax, except for that already specified in the macro

processor. For oxample, the operation for adding two

matrices is quite different from that of adding two scalar

numbers. Yet in both a matrix language and a scalar

language, the word "add" could be useo to specify the

additioi. process. The output of the macro processor can

be processed either through the CAMA interpreter or

through a compiler for the language which has been speci-

fied as the base language for all of the macros. However,

the base languaqe for all macros must be the same. That

is, we cannot expand some macros into FORTRAN and others

into MAD and process them all through the same comoller.

The user must observe this rule because the macro processor

does not check, unless notified, to see whether the base

language is self-consistent.

The CAMA macro processor was modeled on the macro

processor for the IBM model 360 assembler, and although

it is not an exact replica it was created in the same

spirit, and uses some of the same notation, terminology,
5

and operational procedures . The peculiarities of the

CAMA system will be explained in succeeding parts of this

report.

2. nUMSARY

Sywbolic ?»r*m*tt>r

A tynbolle p«ra»oCer conntats of no wer« than oiqhi

alphtnuaaric ch»rmct**rn oroceded by an ainr><*r«an(L Th«»

eiqht alphanuperic characters m^y beqin with an alphabotir

or a nuneric character, may consist of entirely alphabetic

or entirely numeric chavacters, or a mixture of them, and

may also include a number of soecial symbols such as the

question mark. However, a number of symbols are excluded

(see the definition. Excluded Symbols). The symbolic

parameters are used in the macro definition as arguments

in the prototype statement, and as the dummy symbols in the

model statements. That is, any time the macro is called,

these symbolic parameters are substituted for in the model

statements according to the way they have been called in

the call statement and according to the format of the pro»

totype. The substitution is a character-string-type

substitution (see Examples).

Excluded Symbols

¥, () '&§ + -*/.=

Interpreter

An interpreter is the program that accepts statements

in a certain simolified format, and processes and executes

them immeidately. It is to be used with time-sharing or

4

real-time processing, and allows the user to get immediate

results. This is in contrast to a compiler which compiles

the complete procedure and then waits for the usP.r to call

that procedure before executing it. The interpreter

depends upon the existence of subroutines which, in effect,

are called by the interpreter. These subroutines do the

processina for the user. For example, to add two matrices,

the user specities an add command to the interpreter,

and the two matrices (provided they are predefined) are

added immed1ately.

Macro Processor

A macro processor takes certain lines or strings of

characters and substitutes other strings or characters

for them. Not all of the string is substituted- and the

output string is presumably in the form that a langua~e

processor can handle. For example, the output string may

be in the form of an input string to the FORTRAN compiler.

Certain variable names in that FORTRAN string may not be

the same every time the string is to be used. Therefore,

to put th~ string in the proper format, the macro proces-

sor substitutes user-specified names into the string each

time macro is called (see Example 1) •

Attributes

An attribute is a characteristic of a variable or an

.. ,., .

. . • . • . . ' . i ' . . - •
' : t ' • I • J ' ·~ ' ' ' ' ~ .,1 ' \ ' • ,o '() • ' ' •' <t ~ ~i • • ' 0, • ' ' • - • • • • f \ ., • ... "' ,

«rquMnt in it»« •»•cro prtK9%mot. M f4r •• it»« «Met«

oroc»ii«or I« coi»ccri»o4, <th«rv «r« only twr* <yi»*« t»r «itri-

bute* i *t«tu« »ttrihui»« •** cvtuni «it r ibute« . tivf^ita

of thv cH<er«tion«i *n<l functt^ft* of ihcr»» «wo «Mrihuiea <'4n

be found in the «oction e«pl«ininq (Notr npmt»* inm.

Local S#t Sywbol

A local ••! tywbol it • synbolic twirMMter defined and

us«d within • alti^i« «aero. Its value «ay be chanqed

within the »aero by use of the SETA and SCTC en—anda.

Global Set 8y^>oA

A global set syabol la a parameter which la predefined

in an early nacro and can be used in any aubaequent »aero.

It contrasts to a local aet ayabol, which can be uaed only

in the macro in which it ia defined.

Prototype Stategent

A prototype atatenent is a first line of a macro

definition. It aeta the format for that definition and

defines the symbolic parameters that will be used as

arguments; it also specifies the name of the macro.

Language

In CAMA, the word "language" is used to refer to

groups of macros, as well as to such better-known languages

as FORTRAN and MAD. These macros can be accessed as a group.

G

and calls within them are intended ~pecifically for that

language or for that set of macros. The same calls may

be used in a different set of macros or for a different

languagr! under a differenL language namP. and in such ca~es

me.:.~n different operations. Also, macros that have the

same n.:.~mes but under different language names may perform

different operations. For example, a group of macros

under the language name MATRIX perform matrix operations.

There is a different group under the natne DOUBLE POLYNOMIAL

which does double polynomial operations. Even though within

these macro sets or within each of these languages there

would be an operation called multiply, the actual operations

would be quite different. The word "language" in this

context has a more restricted meaning that it does in, say,

the context of FORTRAN or other languages. The matrix

language or the double-polynomial language, used in connec

tion with the parser, results in a more complete la~guage,

morP. like a full-blown computer language. In this case,

the parser actually con\·arts a more complete version of

these languageo to their macro form.

Keyword Parameter

Keyword parameter.s are arguments in a prototype state

ment in a macro definition. They consist of a leading

ampersand followed by up to 8 alphanumeric characters, as

do symbolic parameters. However, keyword parmneters have,

7

in addition, an equal sign and the default value of that

argument. following. The default may be null or it may b.~

an empty string of up to 256 characters, including any

symbol in the symbol set. If a blank or a comma (normally

excluded symbols) are enclosed in parentheses, they will

be accepted; similarly, a blank or a comma enclosed be

tween primes will be accepted. If a keyword parameter is

not explici~ly specified in the call then the information

on the right-hand side of the equal sign is substituted in

the model statement at the time of macro expansion. Unlike

positional parameters, keyword parameters may be given in

any order. However, they could also be given as positional

parameters; that is, given in the proper position they will

be taken for that stilistitution of that parameter.

Positional Parameter

Positional parameters are symbolic parameters of the

macro prototype statement. Substitution, at expansion time,

is dependent upon the position in the prototype. The first

argument in the calling statement is substituted for the

first sywnolic parameter, the second argument for the

second symbolic parameter and so forth. They differ from

keyword parameters only by the fact that no default values

are prescribed.

Macro Call

A macro call is a reference to a predefined macro

8

whoso name is roforencod in th« construction of a procedure

or another macro.

String

A string ia a sequence of characters—alphabetic#

numeric, and/or special—which can be accepted by a digital

computer.

Null String (or Null)

A null string is one with no characters and hence

occupies no storage. By contrast, a blank string is one

which has a blank character.

Default Value

The default value is the string that is substituted

during macro expansion when the user does not specify a

.string. The default value is defined by the keyword

parameters in the macro prototype statesmnt.

Leading Symbolic Parameter

In the macro prototype statement, the symbolic param-

eter or the keyword parameter that precedes the name of the

macro is called the leading symbolic parameter. This

symbolic parameter is frequently used for statement numbers

in FORTRAN or statement labels in other languages.

Macro Comnand

A macro command is a command to the macro language

processor which is executed at the time of macro expansion.

Macro commands are control statements which govern the

order and the nature of the processing. They are also

used for the declaration and manipulation of set symbols,

as well as to insert notes and comments to either the

writer or the user, particularly if he performs something

erroneously.

Concatenation

When two strings are joined so that the second string

merely becomes a continuation of the first, they are said

to be concatenated. They then may be treated as a single

string.

Substring

A substring is part of a string or a subset of the

symbols in a larger string. A substring, in general, is

a string of adjacent symbols that have been taken from the

string.

Arithmetic Symbols

The terms "arithmetic symbol" and "arithmetic value"

may be used interchangeably. In certain circumstances in

the use of the SETA command, combinations of numbers and

10

arithmetic operators (plus, jninus, multiply, and divide)

will be treated not as a string but as the number value

that string represents. Also, certain set symbols that

have arithmetic values can be either concatenated or used

in simple arithmetic expressions to represent a new arith-

metic value. See Example 4.

Macro Definition

A macro definition consists of a macro prototype

statement, followed by one or more macro model statements,

and/or commands, and terminated by a MEND enclosed in

parentheses.

Macro Prototype

A line of symbols consisting of a leading symbolic

parameter (optional), a macro name, and zero to twenty

symbolic parameters.

Macro Model Statement

A line of symbols which is to be reproduced when a

macro is expanded. At expansion the symbolic parameters

and set symbols occurring in the model statement will

have their current values—strings of symbols—substituted,

Operation of the Macro Processor

The macro processor in CAMA is initiated by the

enclosing of the word MAC in parentheses, followed by the

11

macro name encxosed in parentheses, followed by the langu-

age's name enclosed by parentheses. Each line of the

macro definition must be preceded by a line number. The

line number is not shared as part of the text, but can be

used for editing purposes, just as are MTS line files.

The macro definition is terminated by a MEND statement

enclosed in parentheses.

12

3. EXAMPLES

3.1 SIMPLE MACRO EXAMPLES

Example 1. Prototype

17.3 &ALPHA

line leading
number symbolic
(not stoied parameter
with text) (optional)

GEORGE

macro
name

&B,&CAT1

symbolic
parameters
(from 0 to 20 may
be specified)

Many blanks, one blank, or a single comma accompanied

by zero, one, or more blanks can be used as delimiters.

Example 2. Model Statements in

a) a Base Language

16.1(FORTRAN)13
//\ ^

line number language
(peeled off name
and not stored)

A=B+&C

FORTRAN statement con-
taining symbolic para-
meters

During expansion of a FORTRAN-based macro,

column numbers are aligned to standard FORTRAN.

b) a Macro-created Language

3 2.2(LANG1)ALPHA GEORGE
$ ft $

LANG1 is the leading macro
language in argument name
which the
macro GEORGE
is to be found.

9.1(I^NG2)

LANG2 is the
language in
which the
macro HENRY
is to be found.

A,ERIC

macro
arguments

^
HENRY A1,&B7

leading
argument
omitted

macro
name

arguments con-
taining symbolic
parameters

13

This assumes that LANG1 and LANG2 have been

previously created.

Example 3. Simple Usage

The following is a macro definition.

CAMA control statements

(MACRO){F6)(TREE) F6 => macro name; TREE => language

1 &A F6 &B o.C prototype statement

2 &A ARE &B AND &C model statement

(MEND) CAMA control statement

The macro call

(TREE)GIRLS F6 SUGAR SPICE

would produce on expansion

GIRLS ARE SUGAR AND SPICE.

Example 4. Cascading of Languages

Macros defined in one language may be used to de-

fine new macros, either in that language or another.

Suppose that in the language LANG1 the following

macro is defined.

&LEAD ALFRED 6tDOG,&CAT prototype

1 ..(FORTRAN) &LEAD ANSWER« (&DOG) *&CAT model

Then this is used in defining a macro in the LANG2

language.

&A HENRY &B,&C

(LANG1)&A ALFRED &B+&C,53

Then the call

14

(LANG2)691 HENRY Al B7

would produce on expansion

691 ANSWER=(A1+B7)*53

in the proper FORTRAN column format. The call

(LANG2) HENRY MAY-JUNE SEPT

would produce on expansion

ANSWER«(MAY-JUNE+SEPT)*53.

Example 5. Too Many and Too Few Arguments on Calling a Macro

Given the following prototype

MACNM &A &B &C

the call

MACNM ALPHA BETA,

would set &A to ALPHA, &B to BETA, and &C null.

Whereas the call

MACNM ALPHA BETA GAMMA OMEGA

would set &A to ALPHA, &B to BETA, and &C to GAMMA;

OMEGA is ignored. OMEGA could be referenced as &SYSLIST(4).

If the mode statement for this macro were

&A+&B-&C

the two expansions would be

ALPHA+BETA-

and

ALPHA+BETA-GAMMA

respectively.

Example 6. Use of Keyword Parameters

If &A=XYZ occurs in a prototype, and A=123 occurs

15

in a macro call, the &A is given the value of 123; other-

wise &A retains the value XYZ.

If the literal string X=Z were to be a positional

argument, the user would write X==y in the macro call.

If it were used as a keyword argument, A=X=Y would be

written.

Example 7. Mixed Keyword and Positional Prototype

If the following was a prototype

&LEAD MACRO &A-XYZ,&B

and the macro call

MACRO 123,B=ABC,

at expansion time, the macro call sets &A to 123 and

&B to ABC

Example 8. Special Symbols

The symbols $, {) ,&@.+-*/= are not allowed

in a symbolic parameter. To enter an & (ampersand), @

(at sign), or a . (period) in a string being expanded,

the user must use a double symbol. The same applies to

primes needed between primes in a literal string. If &A

was set to BOY and &B set to GIRL, the string &A && &B

would be expanded as

BOY & GIRL.

Example 9. The MGO Command

The MGO command transfers operation of the macro

processor to the line specified,

(MGO) 6 - reads next model statement from line 6.

16

Assume &A is 6, &B is 3, and &A5 is 12.4.

(MGO) &A processing continues at line 6

(MGO) &A.5 processing continues at line 65

(MGO) &A..5 processing continues at line 6.5

(MGO) &A5 processing continues at line 12.4

(MGO) &A&B processing continues at line 63

(MGO) &A.&B processing continues at line 63

(MGO) 6.5 processing continues at line 6.5

Example 10. Use of LOCAL; GLOBAL^ SETAf and SETC Commands

(LOCAL) &Af &A69B4

declares symbols &A and &A69B4 to be local set symbols

(either arithmetic or character).

(GLOBAL) &A, &CAT, &BOWWOW

declares symbols to be global set symbols.

(SETA) &A = 6

sets local or global set symbol &A to 6.

(SETA) &CAT =6*7

sets &CAT to 42.

(SETA) &CAT = &A + &MOUSE

If &A is 2 and &MOUSE is 7, &CAT is set to 9.

(SETA) &A = &B&C

illegal (no concatenation is allowed).

(SETC) &A = 'GOAT'

gives &A string value GOAT.

17

(SETC) &A = GOAT

illegal (primes needed).

(SETC) &A = 'CAN''T'

sets &A to CAN'T.

If &A is DOG, &B is BOWWOW, &M=3, and &N=4

(SETC) &CAT = '&R' sets SCAT to DOG

(SETC) &CAT = 'SASB' sets &AAT to DOGBOWWOW

(SETC) &CAT = 'SA^' sets &CAT to DOGB

(SETC) &CAT = 'B&A' sets &CAT to BDOG

(SETC) SCAT = 'SB'(2,5) sets SCAT to OWWO (picks

second through fifth characters in

string)

(SETC) &CAT = '«.B^SM^N) uses values of &M and &N

to truncate &B to WW

(SETC) &CAT = 'SB'(3,10) sets SCAT to WWOWWflflö

(SETC) &CAT = l&A(2) sets &CAT to OG

(SETC) &CAT = '&A'{,2) sets SCAT to DO.

Example 11. Use of the Arithmetic Conditioned Branch MIFA

(MIFA) &A EQ 1 25

If &A has the value 1, read the next model statement

from line 25; otherwise continue with the next statement.

(MIFA) @K&R GT 5 &A

If &R contains more than five characters and &A

contains a valid line number, a branch is made to the

18

ijivi-n line-. Valid rolaiLonaLs are CT, EU, LT, CL, St,

Mid LI.,

Example 12. Use of the Character Conditional Branch MI PC

(MIFC) 'fcA* EQ 'STRING' 75

If &A is the string 'STRING', then a transfer is

made to line 75. If strings are unequal in length, the

shorter is left-justified and padded with blanks.

Example 13. Use of MNOTE

The command MNOTE is used in tue folUwing way.

Given in the macro model statement

(MNOTE) *fcA' MADE IN PROCESSING XYZ

at expansion time the line

ERROR MADE IN PROCESSING XYZ

will be generated.

Example 14. Use of MCOM Cogmand

The command

;MCOM) THIS IS AN INTERNAL COMMENT

will generate nothing on expansion and is used only for

internal reference.

Example 15. Terminal Coggands

Any of the commands

(MEXIT),

(MEND), or

(PEND)

terminates macro expansion.

19

Kx—pl« ib. U>o ot <f8 Attribute

In tho nodol »tatomont

(MUX) •^SkAHÜ* £Q '0' iJ

if #At(C i» onittod (null) (rum tho macro call, 23

i« tho noxt lino (irocctitod: othorwitu- the line following

is procossod.

Whon tho modol ttatomont is

mifC) 'kSkOOC* NE 'A* 47

if 4D0C is not irithAotic, processing is transferred tu

line 47.

Example 17. Use of fcSYSMDX

If the aodel statesMnt were

(PORTRAK) 2i8YSKnX X-2*2

and If this statesMnt occurs in the 25th macro processed,

225 X • 2 ♦ *

is generated, thus creating a unique statement number.

Example 18. Use of fcSYSLIST

Given the model statement

(MXPA) 48Y8LX8T CT 25 40

if there are more than 25 arguments, go to line 40 for

the model statement, otherwise continue with the next

line.

(8ETC) »BETA • *48Y8LX8T(5)'

»BETA is set to the fifth argument given.

20

Liki'wisr the model statement is

(MIFC) ' lJS6.SYSLIST(0) ' EQ '0' 73

if the leading argument is omitted, and control is

transferred to line 73

Example 19. Use of &SYSRTNCD and &SYSRESLT

&SYSRTCD has the contents of general register 15

in it. Likewise &bYSR£SLT has the contents of general

register zero. The model statements are

(INTERP) MASPTR

(MIFA) &SYSRTNCD NE 0 57

(INTERP) FN &SYSRESLT 6F000000§§X 6FOOOOOO0§X

The second statement transfers control to line 57

if the call on MASPTR has a non-zero return code. The

third statement provides a dump of the master directory

using the pointer returned by MASPTR.

Example 20. Use of &SYSLEVEL

There is no checking in the macro processor to see

if user has generated an infinite recursive loop. The

user may test for this himself by use of &SYSLEVEL.

The model statement

(MIFA) &SYSLEVEL GT 15 82

transfers control to line 82 if macro expansion has gone

deeper than 15 levels.

21

Example 21. Use of Count Attribute @K.

The model statement

(MIFA) @K&DOG GT 8 73

transfers control to statement 73 if &DOG contains more

than 8 characters.

3.2 COMPLETE EXAMPLES

Example 1. Simple Substitution

This example shows the simple substitution proper-

ties of macros. The arguments passed are substituted

to generate valid FORTRAN statements. In the second

call, the leading argument is null, and no statement

label is generated.

Hntry of Macro Definition

(MAC)(ADDSUB)(EXAMPLE)\
l&LABEL ADDSUB &A,&B,&C,&D\
2(FORTRAN)&LABEL &C*&A4 &B\
3 (FORTRAN) &D»&A-&B\
4 (MEND)\

Listing of Macro Definition

%LIST ADDSUB EXAMPLE\
1 &LABEL ADDSUB &A,&B,&C,&D
2 (FORTRAN)&LABEL &C>&A+&B
3 (FORTRAN) &D»&A-&B
4 (MEND)

Entry of Procedure Definition Containing Macro Call

(PRO) UXDX
1 (EXAMPLE)1 ADDSUB X,Y,Z,W\
2 ADDSUB JfK,LfM\

22

Listing of Procedure

%LIST EX1
1 (EXAMPLE)1 ADDSUB X,Y,Z,W
2 ADDSUB J^^M

Expansior of Procedure and Macro

%EXPRO EX1
1 Z=X+Y

W=X-Y
L=J-»-K
M=J-K

Example 2. Use of Keyword Parameters

This example shows the use of keywords. In the

first call, all arguments are specified. In the second

call, all keywords are allowed to default. In the third

call, the second argument, LEN, is given as a positional

argument oven though it was defined as a keyword param-

eter.

Note also in the FORTRAN statement, two ampersands

were used to generate a single &.

Generating the Macro

1 SPRINT &STRING,&LEN=256,&MOD=0,&LINE=0
2 (FORTRAN) CALL SPRINT (&STRING,&LEN,&MOD, «.LINE, &&10)
3(MEND)

Listing the Macro

%LIST SPRINT EXAMPLE
1 SPRINT &STRING,&LEN-256,&MOD=0,&LINEsO
2 (FORTRAN) CALL SPRINT(&STRING,&LEN,&MOD,

&LINE,&&10)
3 (MEND)

23

Generating Macro Calls

1(EXAMPLE) SPRINT STRING,LEN=32^00=1024,LINE=10
2 SPRINT AREA
3 SPRINT OUTPUT,45^00=4096

Listing Macro Calls

%LIST EX1
1 (EXAMPLE) SPRINT STRING,LEN=32,MOD=1024,LINE=10
2 SPRINT AREA
3 SPRINT OUTPUT, 45 ^00=4096

Expansion of Procedure

%EXPR0 EX1
CALL SPRINT(STRING,32,1024,10,&10)
CALL SPRINT(AREA,256,0,0,&10)
CALL SPRINT(OUTPUT,45,4096,0,&10)

Example 3. Use of &SYSNDX

This macro demonstrates the use of &SYSNDX to

generate unique statement labels. If &SYSNDX were not

used, the two calls on VECTADD would generate duplicate

statement numbers.

Generation of Macro

(MAC)(VECTADD)(EXAMPLE)
l&LABEL VECTADD &A,&B,&C,&DIM
2(FORTRAN)&LABEL DO 10&SYSNDX I=1,&DIM
3(FORTRAN)10&SYSNDX &C(I)»&A(I)+&B(I)
4(MEND)

Listing of Macro

%LIST VECTADD EXAMPLE
1 &LABEL VECTADD &A,&B,&C,&DIM
2 (FORTRAN)&LABEL DO 10&SYSNDX I=1,&DIM
3 (FORTRAN)10&SYSNDX &C(I)=&A(I)+&B(I)
4 (MEND)

24

Generation of Procedure

(PRO)(EX3)
1(EXAMPLE) VECTADD X,Y,Z,10
2(EXAMPLE)23 VECVADD L,M,N,25

Listing of Procedure

%LIST EX3
1 (EXAMPLE) VECTADD X^Z^O
2 (EXAMPLE) 23 VECTADD 1.^^,25

Expansion of Procedure

%EXPRO EX3
DO 102 1=1,10

102 Z(I)=X(I)+Y(I)
23 DO 103 1=1,25
103 N(I)=L(I)+M(I)

Example 4. Arithmetic Symbols and Branching

In this example, arithmetic symbols and branching

are used. Line 2 defines a local set symbol, &COUNT,

which will be used as an index in a loop. The set sym-

bol is also initialized to zero.

Li.ie 3 is the first statement of the loop. This

command increments the index by 1. Next, line 4 checks

the condition for ending the loop. If the index is

greater than the number of arguments passed (&SYSLIST),

the macro is finished.

Line 5 generates the actual code. A call on the

non-existent subroutine, SUBR, is made using the argu-

ment specified by the index &COUNT. Line 6 merely closes

the loop, and line 7 terminates the macro.

25

(MAC)(LOOP)(EXAMPLE)
1 LOOP
2(LOCAL) &COUNT
3(SETA) &COUNT=&COUNT+l
4(MIFA) &COUNT GT &SYSLIST 7
5 (FORTRAN) CALL SUBR USYSLIST (&COUNT))
6 (MGO) 3
7(MEND)

%LIST LOOP EXAMPLE/
1 LOOP
2 (LOCAL) &COUNT
3 (SETA) &COUNT=(iCOUNT+1
4 (MIFA) &COUNT GT &SYSLIST 7
5 (FORTRAN) CALL SUBR(&SYSLIST(&COUNT))
6 (MGO) 3
7 (MEND)

(PRO)(EX4)
1(EXAMPLE)] LOOP A,B,C,1 D
2(EXAMPLE)] [iOOP J,K,L,M,N,0
3(EXAMPLE)] LiOOP X
4 (EXAMPLE)

%LIST EX4
1 (EXAMPLE) LOOP A,B,C,D
2 (EXAMPLE) LOOP J,K,L,M,N,0
3 (EXAMPLE) LOOP X
4 (EXAMPLE) LOOP

%EXPRO EX4
CALL SÜBR(A)
CALL SUBR(B)
CALL SUBR(C)
CALL SUBR(D)
CALL SUBR(J)
CALL SUBR(K)
CALL SUBR(L)
CALL SUBR(M)
CALL SUBR(N)
CALL SUBR(O)
CALL SUBR(X)

Example 5. Use of Global Set Symbols

This macro demonstrates the use of global set sym-

bols. The macro INIT concatenates its two arguments,

truncates the string at 8 characters, and sets &STRING

26

to this value. later, the macro CALL utilizes the global

symbol &STRING.

Generation of Macro INIT

(MAC)(INIT)(EXAMPLE)
1 INIT SA^B
2 (GLOBAL) &STRING
3(SETC) &CTRING=,&A&BI(1,8)
4(MEND)

Generation of Macro CALL

(MAC)(CALL)(EXAMPLE)
1 CALL
2 (GLOBAL) &STRING
3(FORTRAN) PRINT 101
4 (FORTRAN) 101 FORMAT ('«.STRING*)

Listing of Me.cro INIT

%LIST INIT EXAMPLE
1 INIT &A,&B
2 (GLOBAL) &STRING
3 (SETC) SSTRING-'SASB' (1,8)
4 (MEND)

Listing of Macro CALL

%LIST CALL EXAMPLE
1 CALL
2 (GLOBAL) &STRING
3 (FORTRAN) PRINT 101
4 (FORTRAN) 101 FORMAT ('&STRING1)

Generation of Procedure

(PRO) (EX5)
1(EXAMPLE) INIT ABC,DBF
2 CALL
3(EXAMPLE) INIT 12345,67890
4 CALL

27

Listing of Procedure

%LIST EX5
1 (EXAMPLE) INIT ABC,DEF
2 CALL
3 (EXAMPLE) INIT 12345,67890
4 CALL

Note: The use of (EXAMPLE) in line 3 is unnecessary,

It could have been deleted so line 3 would read

INIT 12345,67890

If the user wished he could have included (EXAMPLE)

in every line.

Expansion of Macro

%EXPRO EX5
PRINT 101

101 FORMAT('ABCDEF ')
PRINT 101

101 FORMATC12345678')

Example 6. Use of Conditional Note and Comment Statement

This example demonstrates several features of the

macro language. The first two model statements use the

S-attribute and character-if statements to check to see

if both arguments are present. The fourth line is

standard, and the fifth terminates macro expansion. Line

6 is an internal comment and is not processed. Lines 7

and 9 generate macro error comments.

Generation of Procedure

(PRO)(EX6)
1(EXAMPLE)1 SQUARE X,y
2(EXAMPLE) SQUARE M
3(EXAMPLE) SQUARE ,N

28

Listing of Procedure

%LIST EX6
1 {EXAMPLE^ SQUARE X,Y
2 (EXAMPLE) SQUARE M
3 (EXAMPLE) SQUARE

Generation of Macro

(MAC)(SQUARE)(EXAMPLE)
MACRO WAS PREVIOUSLY DEFINED

1 «.LABEL SQUARE &A,&B
2(MIFC) '(aS&A* EQ '0' 7
3(MIFC) 'eS&B' EQ 'O1 9
4 (FORTRAN)«.LABEL «.A=«1B*«cB
5(MEXIT)
6(MCOM) THE NEXT STATEMENT IS AN ERROR MESSAGE
7(MNOTE) "&&A" IS MISSING
8(MEXIT)
9(MNOTE) "&&B" IS MISSING
10(MEND)

Listing of Macro

%LIST SQUARE EXAMPLE
1 &LABEL SQUARE &A,«.B
2 (MIFC) 'es&A' EQ 'O1 7
3 (MIFC) '^S&B' EQ 'O' 9
4 (FORTRAN) «.LABEL «.A=«.B*fi,B
5 (MEXIT)
6 (MCUM) THE NEXT STATEMENT IS AN ERROR MESSAGE
7 (MNOTE) "«.«.A" IS MISSING
8 (MEXIT)
9 (MNOTE) "«.«■B" IS MISSING

10 (MEND)

Expansion of Macro

%EXPRO EX6
1 X=Y*Y
ERROR
"«.B" IS MISSING

ERROR
"SA" IS MISSING

29

Example 7. Use of Interpreter and Macro Processor
Together

This last example uses the interpreter -».nd macro

processor together. Line 3 sets the interpreter in arith-

metic mode. Line 2 checks for a missing argument, and

line 4 uses the interpreter to find the list in the data

structure.

In line 5, the return code from LIST is checked, ar.d

if it is non-zero (implying that the list cannot be found)

an error message is printed. Line 6 calls FN to dump the

list.

Generation of Macro

(MAC)(DUMP)(EXAMPLE)
1 DUMP &LIST
2(MIFC) 'eS&LIST' EQ '0' 8
3(INTERP)(ARITHMETIC)
4(INTERP) LIST 'fiLIST' POINTER
5(MIFA) &SYSRTNCD NE 0 10
6(INTERP) FN POINTER 6FO000O0@§X 6FOOOnO0@§X
7(MEXIT)
8(MN0TE) NO ARGUMENT GIVEN
9(MEXIT)
lO(MNOTE) LIST "&LIST." DOES NOT EXIST
11(MEND)

Listing of Macro

&LIST DUMP EXAMPLE
1 DUMP &LIST
2 (MIFC) 'eS&LIST' EQ '0' 8
3 (INTERP)(ARITHMETIC)
4 (INTERP) LIST '«.LIST1 POINTER
5 (MIFA) &SYSRTNCD NE 0 10
6 (INTERP) FN POINTER 6F000000@@X 6F000000§§X
7 (MEXIT)
8 (MNOTE) NO ARGUMENT GIVEN
9 (MEXIT)

10 (MNOTE) LIST "SLIST." DOES NOT EXIST
11 (MEND)

30

Generation of Procedure

(PRO)(EX7)
UCXAMPLL) DUMP MLANÜDIR
2(i:XAMPl£) DUMP AAAAAAAA
3(EXAMPLE) DUMP

Listing of Procedure

»LIST EX7
1 (EXAMPLE) DUMP MLANGDIR
2 (EXAMPLE) DUMP AAAAAAAA
3 (EXAMPLE) DUMP

Expansion of Macro

%EXPRO EX7
DUMP OF MLANGDIR
COMMAND 00519E78
EXAMPLE 005010CR

«ERROR*
LIST "AAAAAAAA" DOES NOT EXIST
ERROR
NO ARGUMENT GIVEN

APPENDIX A.

Description« of «uoroutine« used in the

macro proce..or and available for general use.

NAME:

PURPOSE:

CALLING SEQUENCE

ARGUMENTS:

RETURN CODE

COMMENTS

CLNUMB

to convert an internal line number
to ELCDIC characters for printing.

CALL CLNUMB{VALUE,PTR,&1)

VALUE fullword integer
internal line number

PTR fullword pointer to
12-byte output area

RC=«4 absolute value of VALUE too
big for line number

1. the absolute value of VALUE must
be less than 99,999,999.

2. the format of the output is
#-99999.999?, where the 9^
can be any numeric digit.

A-2

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONIC4

to convert a fullword integer to
EBCDIC characters for printing

CALL C0NIC4(PTR,LEN,VALUE,&1)

PTR fullword pointer to start of
output region

LEN halfword integer maximum
length of area

VALUE fullword integer value to be
i nverted

RC«4 insufficient room for sign and
all digits

none

A-3

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE;

COMMENTS:

CONBH

to convert a binary string to hexa-
decimal characters for printing

CALL CONBH (PTRIN, LEN ,PTRO, & 1)

PTRIN fullword pointer to string to
be converted

LEN halfword length of string

PTRO fullword pointer to output
region

RCss4 length not positive

length of output region is twice
the value in LEN

A-4

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONCN

to determine a numeric constant type
and convert accordingly.

CALL CONCN (PTR,LEN, IRES, RES, SW,«,!)

PTR fullword pointer to start of
string

LEN halfword maximum length of
string

IRES result if type is integer
(returned)

RES result if type is real (returned)

SW fullword switch indicating
type (returned)

0 ==> fixed point
1 ==> floating point

RC=4 INVALID ARGUMENTS

This subroutine determines if a
string fits the criteria for an
integer or real constant. It then
calls either C0NCF4 or C0NIC4 to con-
vert the string. The proper return
argument is stored and the switch set
to indicate the type.

A-5

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE;

COMMENTS

CONCF4

to convert a character string to
a single-precision floating—point
number

CALL C0NCF4(PTR,LEN,RES,SI1)

PTR fullword pointer to start of
string

LEN halfword integer maximum
length of string

RES single-precision floating-
point value of string
(returned)

RC=4 string does not conform to
FORTRAN IV standar* for a
double-precision floating-
point number

1. Strings accepted are exactly
those defined as REAL*8 constants
in FORTRAN, except an 'E1 is used
for exponent notation rather than
a 'D'. The resulting value is
truncated to single-precision.

2. The string is scanned and as much of it
as possible is used in the constant
conversion. PTR and LEN are up-
dated to the remainder of the string.

A-6

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CLNUM

to convert characters in MTS line
number format to internal fixed
point.

CALL CLNUM(PTR,IRES,PTRN,&1)

PTR fullword pointer to start of
string

IRES fullword integer; on return it
contains value of number XI000

PTRN fullword pointer to character
on which scanning stopped (returned)

RC=4 string does not fit definition
of MTS line number

The string is scanned to a break
character and PTRN is set to point to
that character.

A-7

NAME:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONFC8

to convert a double-precision floating-
point number to EBCDIC characters
for printing.

CALL C0NFC8{PTR,LEN,DEC,VALUE,&1)

PTR fullword pointer to start of
output area

LEN halfword integer length of
output area

DEC halfword integer maximum
number of digits after decimal
point.

VALUE REAL*8 value of number to be
converted

RC=4 improper lengths (see comments)

1. The maximum number of digits before
the decimal point is LEN-DEC-6.

2. DEC can be any integer from ü to 12.

3. LEN can be any integer from DEC+6
to DEC+17; i.e., the number of digits
before the decimal point can range
from 0-11.

A-8

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONFC4

to convert a single-precision floating-
point number to EBCDIC characters for
printing.

CALL C0NFC4(PTR,LEN,DEC,VALUE,&1)

PTR fullword pointer to start of
output region

LEN halfword integer length of
area

DEC halfword integer maximum
number of digits after decimal
point

VALUE REAL*4 value of number to be
converted

RC=4 improper lengths(see comments)

1. The maximum number of digits
before the decimal point is
LEN-DEC-6.

2. DEC can be any integer from
0-12.

3. LEN can be any integer from
DEC+6 to DEC+17; i.e., the
number of digits before the
decimal point can range from
0-11.

A-9

NAME:

PURPOSE:

CALLING SEQUENCE

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONIC2

to convert a halfword integer to
EBCDIC characters for printing

CALL CONIC 2 (PTRJJEN, VALUE, &1)

PTR fullword pointer to start of
output region

LEN halfword integer length of
output area

VALUE halfword int ~ger value to be
converted.

RC=4 insufficient room for sign and
all digits

none

A-10

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONCI2

to convert a character string to a
halfword Integer

CALL C0NCI2(PTR,LEN,IRES,&1)

PTR fullword pointer to start of
string

LEN halfword maximum length of
string

IRES halfword integer result
(returned)

RC«4 string does not meet FORTRAN IV
standards

1. Strings accepted are exactly those
defined as INTEGER*2 constants in
FORTRAN.

2. The string is scanned and as much of it
as possible is used in the constant
conversion. PTR and LEN are up-
dated to the remainder of the string.

A-ll

NAMi::

Pl'RPOSH:

CALLING SEQUENCi:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONCI4

to convert a character string to
a fullword integer

CALL C0NCI4(PTR,LEN,IRES,S.1)

PTR

LEN

IRES

RC-4

1

fullword pointer to start of
string.

halfword maximum length of
string

fullword integer result
(returned)

String does not meet FORTRAN IV
standard for an integer constant.

Strings accepted are exactly those
defined as INTEGER*4 constants in
FORTRAN.

The string is scanned and as much
as possible is used in the constant
conversion. PTR and LEN are updated
to the remainder of the string.

A-12

NAME:

PURPOSE:

CALLING SEQUENCE:

ARGUMENTS:

RETURN CODE:

COMMENTS:

CONBB

to convert a string of hexadecimal
characters to binary equivalent

CALL C0NHB(PTR,LEN,RESPTR,RESLEN,&1)

PTR fullword pointer to start of
string

LEN halfword maximum length of
string

RESPTR fullword pointer to location
of output area

RESLEN haifword length of output
area

RC-4 LEN not>0 and < 513; or
RESLEN not> 0 and < 257

1. The converted binary string is
right-justified and either padded
with zeros or truncated to fit
output area.

2. An odd number of hexadecimal
digits is accepted.

3. As much of the string as possible
is converted. PTR and LEN are
updated to the remainder of the
string.

A-13

NAMK:

PURPOSE:

CALLING SEQUENCE;

ARGUMENTS:

RETURN CODE;

COMMENTS

CONCF8

to convert a character string to a
double-procision floating-point
number

CALL CONCF8(PTR,LEN,RES,«.l)

PTR fullword pointer to start of
string

LEN halfword maximum length of
string

RES double-precision floating-
point value of string (returned)

RC=4 string does not conform to
FORTRAN IV standards for a
double-precision floating-
point number.

1. Strings accepted are exactly
those defined as REAL*8 constants
in FORTRAN, except an 'E* is used
for exponent notation rather than
a 'D'.

2. The string is scanned and as much of it
as possible used in the constant
conversion. PTR and LEN are
updated to the remainder of the
string

A-14

REFERENCES

1. Julyk, L.J., and Wolf, L.W., The CAMA Data Structure,
Memorandum 29, Concomp Project, University of "
Michigan, Ann Arbor, August 1970.

2. Julyk, L.J., The CAMA Operating System, Memorandum 30,
ibid.

3. Wolf, L.W., CAMA (Computer-Aided Mathematical Analysis)
A General Description, Memorandum 33, ibicT

4. Dingwall, T., Julyk, L.J., and Wolf, L.W., The CAMA
Interpreter, ibid.

5. IBM Systems Reference Library C28-6514.

31

.v.' 1,A:..'. I !■' I Li.i 32
■>r, •i,l- . iv;.*RSIi.^ *■ loi.

1 1
.S»C..fr/ > «Ut». re.',.'/) ' r.

DOCUMENT CCN ■RCL OATA - R i. - !

..<i.iiN» r . s. A . 1 . ' ¥ . ■ i ' ■ " ' ■ ■ i... ■ • ■ >; scJt»- .TY CLASSIFICATIüN ;

UNI Vl-KSl'i'Y OF MICH 1 (IAN
L'UNCOMP I'KOJl-H'T

Unclassified
rrr ,.^6üfi

f i H • p r H r

THK CAMA MACHO I'HOCt'.SiU)!.;

Memoiarulum 3'
S A JT M:1^ S /■' -f ',«frn , rr i.M.

'I'.J. innqwail, L.J. Juiyk, and L.W. Wolf

T^rrrTT
August rr/u

<.3, Cr ?-..

31
a« .IN ■"«», ' -,,•■.-, s

UA-4l3-üMJ üSA-3050

•'". ORIGINATOR'S REPORT NUMBERIS^

I
Memorandum 35

]9fi. 0TMER REPORT NOISI Mnv olh»f numhiT.s Ihnr mnv fir «>.■ ;4neiy
f/iltf rpporf;

['0 OlSTRieUTi.lN STATMEST

I
i üualifiod roquesters may obtain copies of this report from DDC,

: SPONSOR.NO MILITARY ACTIV.TV

ADVANCED RESEARCH PROJECTS AGENCY

I 1. ABSTRACT

Under the CAMA (Computer-Aided Mathematical Analysis) System,
we have devised a special macro processor which has as its object-
languages not assembler languages, but higher-order languages such
as FORTRAN, MAD, or ALGOL. The macro processor was designed to
accomplish a number of objectives. First, it would enable a rela-
tively unsophisticated user who is acquainted only with a language
such as FORTRAN and not with the assembly language, to create
macros and bases of languages without having to code in the assembly
language. Second, the macro language was created to be a prepro-
cessor for the interpreter language in CAMA. Thira, it was created
to be an intermediate processor between the mathematical expressions
generated in the terminal computer which pass through a parsing op-
era c ion and the base language such as FORTRAN. The macro processor
was also created so that commands for the CAMA system could be
written and extended easily, thereby enabling relatively unsophisti-
cated users to extend the commands for their own particular needs,
as well as write the original system commands.

DD 'r.,1473 Unclassified
Security CUstlflcation

unciassitied
5«cuflty CU>»tfic«tloir

33

14.
KEY WORDS

LINK A
ROLE WT

LINK
ROLE

LINK C
WT ROLE WT

CAMA macro processor
macro processor

Unclassified
Security Classification

